Essentially non-oscillatory Residual Distribution schemes for hyperbolic problems
نویسندگان
چکیده
منابع مشابه
Essentially non-oscillatory Residual Distribution schemes for hyperbolic problems
The Residual Distribution (RD) schemes are an alternative to standard high order accurate finite volume schemes. They have several advantages: a better accuracy, a much more compact stencil, easy parallelization. However, they face several problems, at least for steady problems which are the only cases considered here. The solution is obtained via an iterative method. The iterative convergence ...
متن کاملEssentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws
In these lecture notes we describe the construction, analysis, and application of ENO (Essentially Non-Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) schemes for hyperbolic conservation laws and related Hamilton-Jacobi equations. ENO and WENO schemes are high order accurate finite difference schemes designed for problems with piecewise smooth solutions containing discontinuities. ...
متن کاملHigh order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws
In ([10], JCP 227 No. 6, 2008, pp. 3101–3211), the authors have designed a new fifth order WENO finite-difference scheme by adding a higher order smoothness indicator which is obtained as a simple and inexpensive linear combination of the already existing low order smoothness indicators. Moreover, this new scheme, dubbed as WENO-Z, has a CPU cost which is equivalent to the one of the classical ...
متن کاملCompact-reconstruction Weighted Essentially Non-oscillatory Schemes for Hyperbolic Conservation Laws
Title of dissertation: COMPACT-RECONSTRUCTION WEIGHTED ESSENTIALLY NON-OSCILLATORY SCHEMES FOR HYPERBOLIC CONSERVATION LAWS Debojyoti Ghosh, Doctor of Philosophy, 2012 Dissertation directed by: Professor James D. Baeder Department of Aerospace Engineering A new class of non-linear compact interpolation schemes is introduced in this dissertation that have a high spectral resolution and are non-o...
متن کاملHybrid weighted essentially non-oscillatory schemes with different indicators
A key idea in finite difference weighted essentially non-oscillatory (WENO) schemes is a combination of lower order fluxes to obtain a higher order approximation. The choice of the weight to each candidate stencil, which is a nonlinear function of the grid values, is crucial to the success of WENO. For the system case, WENO schemes are based on local characteristic decompositions and flux split...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2006
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2005.10.034